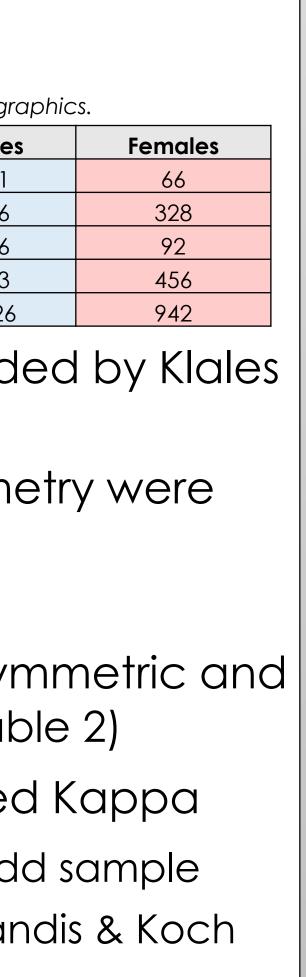


## The Effects of Cranial and Pelvic Asymmetry on Accurate Sex Classification Stephanie J. Cole<sup>1</sup>, BA Luis L. Cabo<sup>1</sup>, MS Alexandra R. Klales<sup>2</sup>, PhD

<sup>1</sup>Applied Forensic Sciences, Mercyhurst University; <sup>2</sup>Forensic Anthropology Program, Department of Sociology & Anthropology, Washburn University

## Introduction

- $\succ$  Sex estimation is an important parameter of the biological profile
  - Accurate estimation = more accurate sex-specific methods for estimating the other parameters (i.e., ancestry, stature, age)
- $\succ$  Klales et al. (2012) and Walker (2008) use bilateral traits of the pelvis and skull for sex estimation
  - Used in active forensic casework in the U.S. & internationally
- $\succ$  By convention, forensic anthropologists typically use the left side when assessing bilateral traits
- $\succ$  Preferentially selecting the left side could result in fundamental biases and a systematic decrease in classification accuracy for either males or females


## Research Goals

- $\succ$  Examine the impact of the frequency, degree, and direction of asymmetry on the original Klales et al. (2012) and Walker (2008) methods
- $\succ$  Put forth recommendations for use of these methods in asymmetric individuals

## Materials & Methods

| $\triangleright$ | 2,168 skulls & innominates*                                                  | Table 1. Sampl | e demogra |
|------------------|------------------------------------------------------------------------------|----------------|-----------|
|                  |                                                                              |                | Males     |
|                  | Hamann-Todd Human Osteological Collection, Terry                             | Asian          | 111       |
|                  | Anatomical Skeletal Collection, Bass Donated Skeletal                        | Black          | 366       |
|                  | Collection, Pretoria Bone Collection, Texas State University                 | Hispanic       | 106       |
|                  | Donated Skeletal Collection, Operation Identification, and                   | White          | 643       |
|                  | Mercyhurst University forensic cases (Table 1)                               | Total          | 1226      |
|                  | Traits scored using figures and descriet al. (2012) and Walker (2008) (Figs. | • •            | orovide   |
|                  | Frequency, degree, and direction of determined                               | trait as       | ymme      |
|                  | <ul> <li>Significance of direction tested with x<sup>2</sup></li> </ul>      | 2              |           |
|                  | Classification accuracies compared asymmetric groups for both method         |                | ,         |
|                  | Intraobserver error tested using Cohe                                        | en's wei       | ghtec     |
|                  | • $n = 100$ from Bass sample, $n = 100$ from                                 | n Haman        | n-Todo    |
|                  | <ul> <li>Based on the agreement parameters<br/>(1977)</li> </ul>             | outlined       | in Lan    |

\* Sample size has been increased by n=858 since abstract submission in August. Results have been updated to reflect the larger sample size.



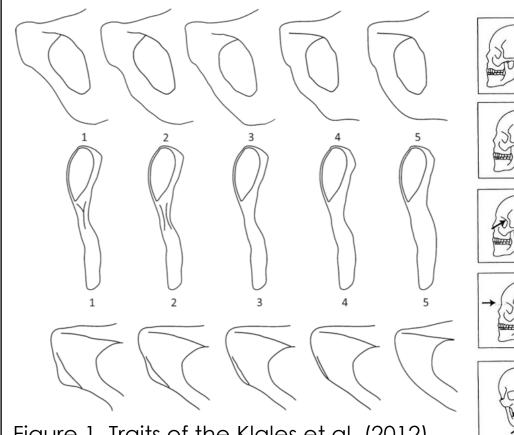
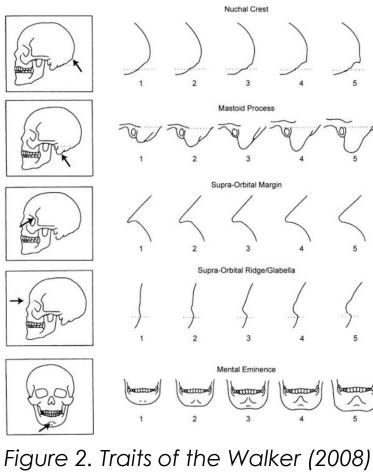




Figure 1. Traits of the Klales et al. (2012) method: subpubic contour (top) medial aspect of ischio-pubic ramus (middle), ventral arc (bottom)



method from Buikstra & Ubelaker (1994).

Results

 $\succ$  Asymmetry present for all traits for both sexes (Table 3) • Examples of asymmetric individuals shown below (Figs. 3-4)

Table 3. Frequency, degree, and direction of trait asymmetry by sex. Direction indicates which side received the higher score. Bolded text indicates statistical significance at p < 0.05.

|                      | Frequency |         | Degree (+/- 1 score) |         | Direction |         |
|----------------------|-----------|---------|----------------------|---------|-----------|---------|
|                      | Males     | Females | Males                | Females | Males     | Females |
| Ventral Arc          | 34.5%     | 21.6%   | 86.0%                | 92.2%   | Right     | Right   |
| Subpubic Contour     | 25.6%     | 23.8%   | 87.8%                | 86.5%   | Right     | Right   |
| Medial Aspect        | 23.4%     | 33.3%   | 97.8%                | 90.0%   | Right     | Left    |
| Mastoid Process      | 41.0%     | 36.0%   | 86.0%                | 92.8%   | Right     | Right   |
| Supra-Orbital Margin | 32.2%     | 27.7%   | 85.9%                | 76.4%   | Right     | Right   |



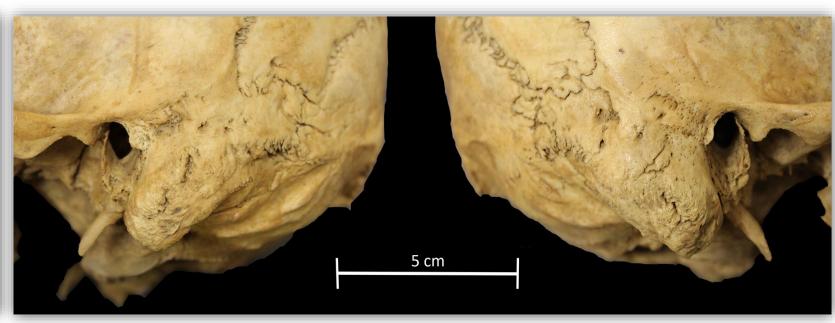
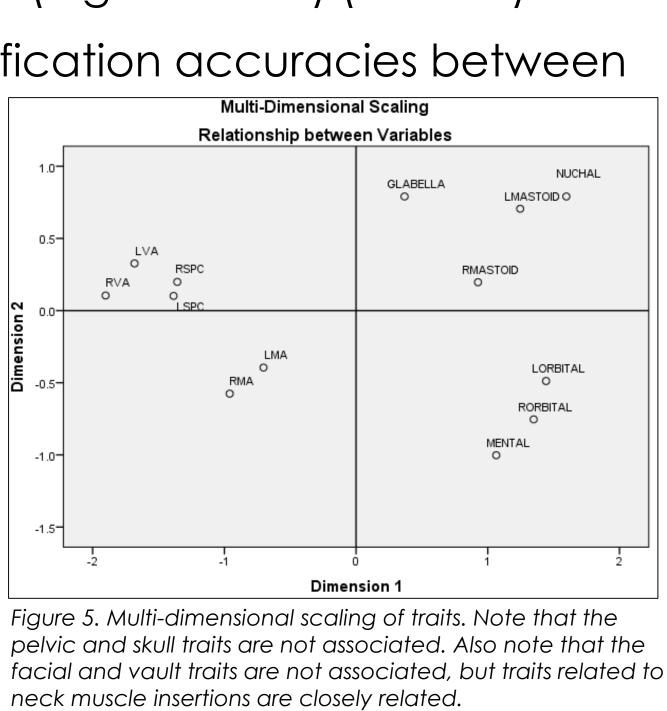




Figure 3. Asymmetry in the ventral arc and subpubic contour. Right side scored higher.

- $\succ$  Most traits were right dominant (higher score) (Table 3)
- Significant differences in classification accuracies between groups were observed

(Table 4)

- $\succ$  Intraobserver error
  - Pelvic traits: substantial agreement
  - Skull traits: fair to moderate agreement
- > Multi-dimensional scaling of traits (Fig. 5)



| Table 2. Method equations. Walker Equation<br>3 has been omitted because it does not<br>contain any bilateral traits. |                         |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|
| Method                                                                                                                | Equation                |  |  |  |  |
| Walker                                                                                                                | Y = -1.375G - 1.185M -  |  |  |  |  |
| Eq.1                                                                                                                  | 1.151ME + 9.128         |  |  |  |  |
| Walker                                                                                                                | Y = -1.568G - 1.459M +  |  |  |  |  |
| Eq.2                                                                                                                  | 7.434                   |  |  |  |  |
| Walker                                                                                                                | Y = - 1.629ME - 1.415M  |  |  |  |  |
| Eq.4                                                                                                                  | + 7.382                 |  |  |  |  |
| Walker                                                                                                                | Y = -1.007SO + 1.850ME  |  |  |  |  |
| Eq.5                                                                                                                  | + 6.018                 |  |  |  |  |
| Walker                                                                                                                | Y = -0.7N -1.559M       |  |  |  |  |
| Eq.6                                                                                                                  | + 5.329                 |  |  |  |  |
| Klales                                                                                                                | Y = 2.726VA + 1.214MA + |  |  |  |  |
| et al.                                                                                                                | 1.073SPC - 16.312       |  |  |  |  |

Figure 4. Asymmetry of the mastoid process. Right side scored higher.

# $\succ$ Most asymmetric individuals were within +/- 1 score (Table 3)

| Result |
|--------|
|        |

Table 4. Classification accuracies (%) between the symmetric group and asymmetric group by method. For the Klales et al. (2012) method, the symmetric group refers to individuals symmetric for all three traits. Bolded text indicates statistical significance at p < 0.05. Males are in shown in blue and females are shown in red.

|                      | Asymm | Symm  | P-Value       | Asymm | Symm | P-Value |
|----------------------|-------|-------|---------------|-------|------|---------|
| Klales L VA          | 93.3  |       | 0.10          | 96.2  | 00.4 | 0.01    |
| Klales R VA          | 92.2  | 95.5  | 0.10          | 90.6  | 98.4 | 0.01    |
| Klales L SPC         | 95.2  | 95.5  | 0.89          | 95.8  | 98.4 | 0.10    |
| Klales R SPC         | 96.4  | 75.5  | 0.07          | 95.8  | 70.4 | 0.10    |
| Klales L MA          | 91.1  | 95.5  | 0.08          | 97.8  | 98.4 | 0.65    |
| Klales R MA          | 93.1  | 70.0  | 0.00          | 97.8  |      |         |
| Klales L VA, SPC     | 77.8  | 95.5  | <0.001        | 92.5  | 98.4 | <0.001  |
| Klales R VA, SPC     | 81.9  | 75.5  | <0.001        | 85.0  |      |         |
| Klales L VA, MA      | 91.8  | 95.5  | 0.14          | 100.0 | 98.4 | 0.92    |
| Klales R VA, MA      | 91.8  |       |               | 98.4  |      |         |
| Klales L SPC, MA     | 93.0  | 95.5  | 0.60          | 97.4  | 98.4 | 0.59    |
| Klales R SPC, MA     | 95.3  |       |               | 97.4  |      |         |
| Klales L VA, SPC, MA | 80.6  | 95.5  | 0.03          | 95.8  | 98.4 | 0.01    |
| Klales R VA, SPC, MA | 96.8  | 75.5  |               | 87.5  |      |         |
| Walker L Equation 1  | 89.1  | 93.0  | 0.19          | 62.4  | 63.5 | 0.36    |
| Walker R Equation 1  | 96.0  | 70.0  |               | 58.4  |      |         |
| Walker L Equation 2  | 89.7  | 92.8  | 0.36          | 59.4  | 56.6 | 0.80    |
| Walker R Equation 2  | 93.2  | 72.0  | 0.50          | 52.2  |      |         |
| Walker L Equation 4  | 89.4  | 94.1  | 0.12          | 36.8  | 37.2 | 0.38    |
| Walker R Equation 4  | 94.5  | / 4.1 | 0.12          | 32.0  | 07.2 | 0.00    |
| Walker L Equation 5  | 93.8  | 96.4  | 0.14          | 26.3  | 28.1 | 0.14    |
| Walker R Equation 5  | 95.7  | 70.4  | 0.14          | 21.1  | 20.1 | 0.14    |
| Walker L Equation 6  | 77.3  | 91.3  | <0.001        | 57.4  | 55.0 | 0.19    |
| Walker R Equation 6  | 88.6  | 71.5  | <b>\U.UUT</b> | 44.5  | 55.0 | 0.17    |

## Discussion & Conclusions

- to scoring inconsistency alone
- is utilized
- misclassifying males
  - better using the left side
- sides when asymmetry is present

### Acknowledgements

This research was funded by National Institute of Justice grant 2015-DN-BX-K014 (P.I. Klales). Thanks go to Lyman Jellema, David Hunt, Marius Loots, Dawnie Steadman, Daniel Wescott, and Kate Spradley for providing access to the skeletal collections used in this research.

For a copy of the poster, full list of references, or questions/comments, contact scole86@lakers.mercyhurst.edu



## ts Continued

 $\succ$  Kappa results indicate the presence of asymmetry is not due

Asymmetry significantly decreases classification accuracy for the Klales et al. (2012) and Walker (2008) methods

depending on which traits are affected and which equation

Preferentially analyzing the left side creates a systematic bias in favor of correctly classifying females at the expense of

Because individuals are largely right dominant for nearly all traits, males classify better using the right side and females classify

Recommended: report classification accuracies from both