Worldwide Population Variation in Pelvic Sexual Dimorphism

Alexandra Klales, ¹ Michael Kenyhercz,² Kyra Stull,³ Kyle McCormick,⁴ and Sandra Call⁵

¹Applied Forensic Sciences, Mercyhurst University, ²Forensic Anthropology Center, University of Tennessee, ³Anthropology, Idaho State University, ⁴ Defense POW/MIA Accounting Agency, ⁵Anthropology, University of Alaska, Fairbanks

Introduction

Biological profile estimation is an essential component of anthropologist's role in medico-legal investigations and in bioarchaeological analyses

Statistics

- Classification accuracy and validity tested: – using *original* Klales et al. (2012) ordinal logistic regression equation (OLR)
- Sex estimation is paramount because other parameters (i.e., ancestry, stature, age) are sex specific
- Innominate, specifically pubic bone, is considered the best indicator of sex in adults and is widely used for sex estimation
- Klales et al. (2012) method, a modification of Phenice's (1969) technique, is currently being used and cited in forensic case reports throughout the U.S. and internationally

Present research tests the validity of the method in multiple national and international samples

Materials

Sample

2.726(VA) + 1.214(MA) + 1.073(SPC) - 16.312pf=1/(1 + score) and pm=1-pf / unknown classified into sex with greater probability / female is < 0

using sample (population) specific OLR equations

Results

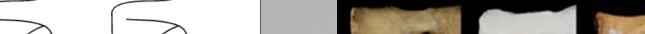
- Klales et al. (2012) is a valid method in all groups except the Thai population (75.9-93.3%)
- Classification accuracy drastically increases (97.9-99%) with sample (population) specific equations

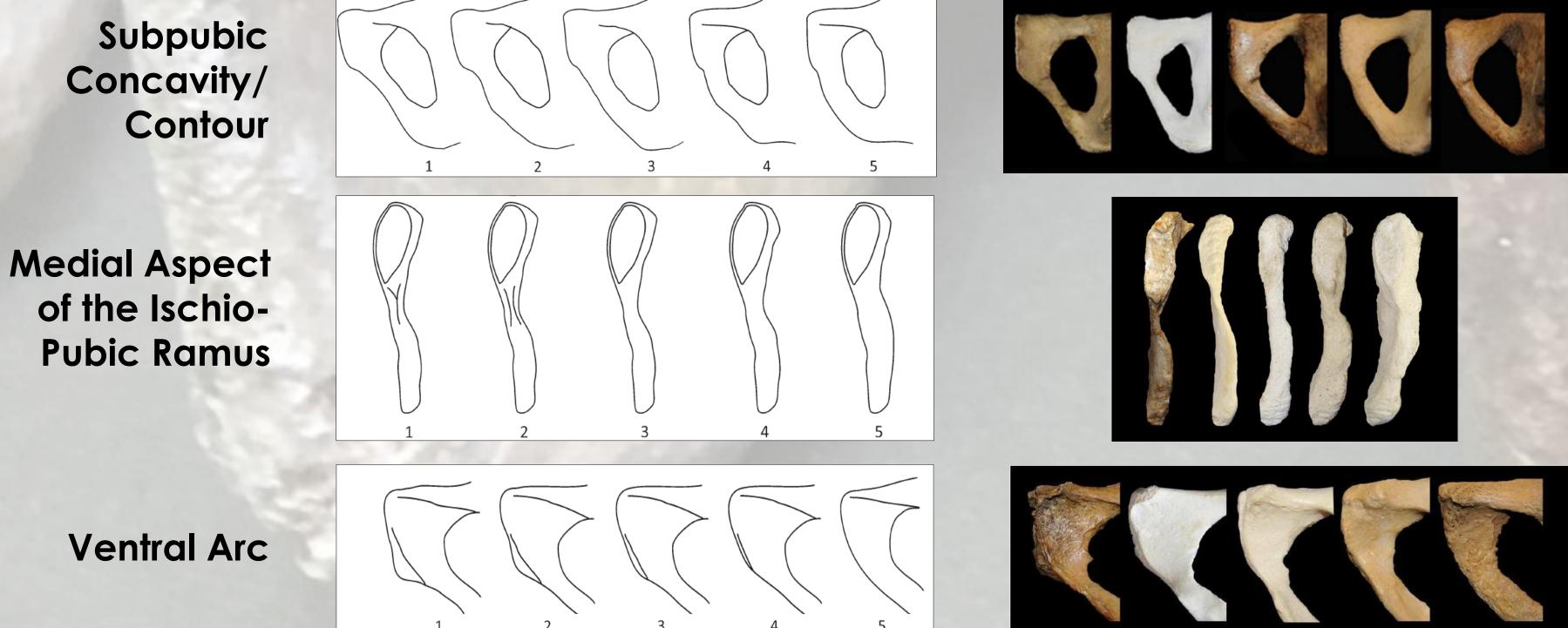
Г		% Correct Using Original Klales (2012) Equation			% Correct Using Recalibrated Population Specific Equation			
	Sample	n=	Females	Males	Total	Females	Males	Total
	South Africa	105	95.5	91.8	93.3	100	98.4	99.0

innominates is derived from several modern skeletal collections from Thailand, South Africa (S.A.), and various U.S. populations

The sample of 532 adult

U.S. White	242	108	134
U.S. Black	25	15	10
U.S. Other *	19	13	6
Thai	142	97	6
S.A. White	12	5	7
S.A. Black	92	56	36
Total	532	294	238


n =


Males Females

Methods

Experienced observers blindly scored each individual for the three Phenice (1969) traits: 1) subpubic contour (SPC), 2) medial aspect of the ischio-pubic ramus (MA), and 3) the ventral arc (VA) using the modifications and methods of Klales et al. (2012)

Images from Klales et al. 2012, Am J Phys Anthropol 149:104-114 and NonmetricPelvisSexing.weebly.com

Thai	141	100	64.2	75.9	97.7	98.9	98.6
U.S. Pooled	286	98.7	86.0	92.7	97.3	98.5	97.9
Global	532	98.3	86.0	91.5	97.5	98.3	97.9

Discussion

- Klales et al. (2012) method is appropriate for use with populations outside of the original sample demographics while population specificity is always recommended, this research suggests that overall sexual dimorphism of the pelvis exceeds population differences
- Using population specific equations nearly <u>eliminates sex bias</u> original equation shows a sex bias towards female in each sample
- Global recalibration equation improves classification in the

event of unknown ancestry

Global Recalibration Equation:

1.738(VA) + 1.455(MA) + 2.100(SPC) - 14.553

Acknowledgements

This research was sponsored in part by NIJ Grant 2015-DN-BX-K014. Thanks go to Dawnie Steadman, Ericka L'Abbe, Dennis Dirkmaat, Panya Tuamsak, and Laura Fulginiti for access to the skeletal collections used in this research. For a complete list of references or a copy of this poster, please contact alexandra.klales@gmail.com or scan the QR code provided to the right.