Differential Recovery Rates of Skeletonized Remains

Rhian R. Dunn, BA1, Dorianis M. Perez, BS2, Alexandra R. Klales, PhD2, Dennis C. Dirkmaat, PhD1

1Department of Applied Forensic Sciences, Mercyhurst University, 2Forensic Anthropology Program, Soc & Anth Dept, Washburn University

Introduction

- Forensic anthropologists have an important role in outdoor crime scene recovery and reconstruction, especially with skeletonized, badly decomposed, and taphonomically-altered remains
- In this study, recovery rates represent element MNI, as defined by Cannon (1991)
- **Goal**: Explore differences in element MNI rates between scenes recovered by Mercyhurst Forensic Scene Recovery Team (M-FSRT) and those performed by other agencies (coroner’s offices, law enforcement, etc.) that are not formally trained in human osteology, forensic archaeology, and forensic taphonomy
- **Hypothesis**: Assuming equal recovery rates, forensic archaeological recoveries are expected to display lower Element MNIs than other recoveries due to longer average PMI

Materials and Methods

- **Sample**: Inventory of cases from the Mercyhurst University Forensic Case Databank (1986 - present) that were completely skeletonized at the time of recovery (Table 1)
 - Cases recovered by the M-FSRT employed forensic archaeological principles and were conducted by individuals with extensive training in human osteology, forensic archaeology, and taphonomy (Fig. 2)
 - Cases recovered by other agencies were delivered to the Mercyhurst Forensic Anthropology Laboratory (M-FAL) for analyses and were not recovered by the M-FSRT (Fig. 3)
 - Cases were re-sampled for element MNI calculations (Table 2)

Analyses

- Individual skeletal elements were coded as present (1) or absent (0) for each case based on the inventories and homunculi in the database (Fig. 1)
- Polygon vector shapefiles were created from each of the homunculi converted to raster data stacked together in ArcGIS® program for analysis
- Recovery rates based on element MNI were compared
 - M-FSRT (n=24) vs. other agencies (n=19)
 - Only included surface scatters where equal skeletal representation could be assumed
 - Element MNI calculated by counting total elements recovered out of all elements available (assuming 100% percent of remains are at the scene)

Results

- **Higher average PMI for M-FSRT recoveries, as predicted in null hypothesis (Table 3)**
 - Higher than expected element MNIs in archaeological recoveries were noted (Table 4)
- Average PMI for M-FSRT recoveries was greater than other agency recoveries
 - M-FSRT avg. PMI = 45.7 months
 - Other agency avg. PMI = 10.3 months
- Using “stacking” method in ArcGIS, M-FSRT recovered a high percentage of skeletal elements, other agencies recovered a low percentage of skeletal elements (Fig. 4)

Discussion and Conclusions

- Importance of incorporating forensic anthropologists into recovery phase of outdoor scenes
 - Despite often widely dispersed scenes (Fig. 5) and higher PMI overall higher element MNI
 - Forensic archaeological methods proved to exceed expectations of having lower element MNI due to greater PMI
 - Need to increase law enforcement and medicolegal awareness and training opportunities for in osteology, forensic archaeology, and taphonomy

Acknowledgements

- Thanks go to Jessica Yopak for assistance with GIS and Luis Cabo for assistance with analyses.
- For a list of references or a copy of the poster, please contact: dmperez2@gmail.com or rhian_dunn@Comcast.net

Table 1. Sample sizes for ArcGIS® analysis.

<table>
<thead>
<tr>
<th>M-FSRT Recoveries</th>
<th>Other Agency Recoveries</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>19</td>
<td>43</td>
</tr>
</tbody>
</table>

Table 2. Sample sizes for element MNI calculations.

<table>
<thead>
<tr>
<th>M-FSRT Recoveries</th>
<th>Other Agency Recoveries</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>19</td>
<td>43</td>
</tr>
</tbody>
</table>

Figure 1. Example of a case homunculus indicating inventory, as well as, trauma and taphonomy locations.

Figure 2. Example of a case with a PMI of 15 years recovered using forensic archaeology; overview of scene with approximate location of remains (box (A)), hands and knees denuding (B); scene following denuding (C); geo-referenced plan view map of scene (D); overall view of remains after processing and cleaning in the laboratory (E).

Figure 3. Cases recovered by an agency other than the M-FSRT, FSRT photos of skeletal inventory (A); “box of bones” delivered to M-FAL by an outside agency for skeletal analysis (E). In example A, M-FSRT went back to scene to recover remainder of the lower limbs.

Figure 4. Recovery rates based on ArcGIS® "stacking" of case homunculi which accounts for fragmentary remains. Left: Cases recovered by the M-FSRT are nearly complete. The skeletal elements most valuable for estimation of biological profile parameters have high recovery rates. Right: cases recovered by non-forensic anthropological agencies were frequently incomplete, especially the crania, ribs, pubis, and some bones of the lower limb. Note: sample size is different for each image; therefore, the two cannot be directly compared and are analyzed independently.

Figure 5. ArcGIS® map of M-FSRT case showing the full extent of a surface scatter with widely dispersed elements.